首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   112346篇
  免费   1700篇
  国内免费   829篇
测绘学   2826篇
大气科学   7695篇
地球物理   21041篇
地质学   41915篇
海洋学   9919篇
天文学   25058篇
综合类   363篇
自然地理   6058篇
  2022年   658篇
  2021年   1118篇
  2020年   1236篇
  2019年   1396篇
  2018年   4485篇
  2017年   4096篇
  2016年   3966篇
  2015年   1690篇
  2014年   3022篇
  2013年   5307篇
  2012年   3892篇
  2011年   5871篇
  2010年   5269篇
  2009年   6443篇
  2008年   5522篇
  2007年   5916篇
  2006年   4187篇
  2005年   3263篇
  2004年   3174篇
  2003年   3032篇
  2002年   2897篇
  2001年   2346篇
  2000年   2241篇
  1999年   1786篇
  1998年   1835篇
  1997年   1673篇
  1996年   1364篇
  1995年   1481篇
  1994年   1302篇
  1993年   1195篇
  1992年   1121篇
  1991年   1130篇
  1990年   1136篇
  1989年   969篇
  1988年   906篇
  1987年   1046篇
  1986年   911篇
  1985年   1178篇
  1984年   1315篇
  1983年   1270篇
  1982年   1185篇
  1981年   1081篇
  1980年   1015篇
  1979年   902篇
  1978年   875篇
  1977年   779篇
  1976年   749篇
  1975年   747篇
  1974年   715篇
  1973年   778篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
The existence and linear stability of the planar equilibrium points for photogravitational elliptical restricted three body problem is investigated in this paper. Assuming that the primaries, one of which is radiating are rotating in an elliptical orbit around their common center of mass. The effect of the radiation pressure, forces due to stellar wind and Poynting–Robertson drag on the dust particles are considered. The location of the five equilibrium points are found using analytical methods. It is observed that the collinear equilibrium points L1, L2 and L3 do not lie on the line joining the primaries but are shifted along the y-coordinate. The instability of the libration points due to the presence of the drag forces is demonstrated by Lyapunov’s first method of stability.  相似文献   
62.
63.
One important, almost ubiquitous, tool for understanding the surfaces of solid bodies throughout the solar system is the study of impact craters. While measuring a distribution of crater diameters and locations is an important tool for a wide variety of studies, so too is measuring a crater's “depth.” Depth can inform numerous studies including the strength of a surface and modification rates in the local environment. There is, however, no standard data set, definition, or technique to perform this data-gathering task, and the abundance of different definitions of “depth” and methods for estimating that quantity can lead to misunderstandings in and of the literature. In this review, we describe a wide variety of data sets and methods to analyze those data sets that have been, are currently, or could be used to derive different types of crater depth measurements. We also recommend certain nomenclature in doing so to help standardize practice in the field. We present a review section of all crater depths that have been published on different solar system bodies which shows how the field has evolved through time and how some common assumptions might not be wholly accurate. We conclude with several recommendations for researchers which could help different data sets to be more easily understood and compared.  相似文献   
64.
High‐strain zones are potential pathways of melt migration through the crust. However, the identification of melt‐present high‐strain deformation is commonly limited to cases where the interpreted volume of melt “frozen” within the high‐strain zone is high (>10%). In this contribution, we examine high‐strain zones in the Pembroke Granulite, an otherwise low‐strain outcrop of volcanic arc lower crust exposed in Fiordland, New Zealand. These high‐strain zones display compositional layering, flaser‐shaped mineral grains, and closely spaced foliation planes indicative of high‐strain deformation. Asymmetric leucosome surrounding peritectic garnet grains suggest deformation was synchronous with minor amounts of in situ partial melting. High‐strain zones lack typical mylonite microstructures and instead display typical equilibrium microstructures, such as straight grain boundaries, 120° triple junctions, and subhedral grain shapes. We identify five key microstructures indicative of the former presence of melt within the high‐strain zones: (a) small dihedral angles of interstitial phases; (b) elongate interstitial grains; (c) small aggregates of quartz grains with xenomorphic plagioclase grains connected in three dimensions; (d) fine‐grained, K‐feldspar bearing, multiphase aggregates with or without augite rims; and (e) mm‐ to cm‐scale felsic dykelets. Preservation of key microstructures indicates that deformation ceased as conditions crossed the solidus, breaking the positive feedback loop between deformation and the presence of melt. We propose that microstructures indicative of the former presence of melt, such as the five identified above, may be used as a tool for recognising rocks formed during melt‐present high‐strain deformation where low (<5%) volumes of leucosome are “frozen” within the high‐strain zone.  相似文献   
65.
66.
Results obtained from simulating the propagation of infrasonic waves from the Chelyabinsk meteoroid explosion observed on February 15, 2013, are given. The pseudodifferential parabolic equation (PDPE) method has been used for calculations. Data on infrasonic waves recorded at the IS31 station (Aktyubinsk, Kazakhstan), located 542.7 km from the likely location of the explosion, have been analyzed. Six infrasonic arrivals (isolated clearly defined pulse signals) were recorded. It is shown that the first “fast” arrival (F) corresponds to the propagation of infrasound in a surface acoustic waveguide. The rest of the arrivals (T1–T5) are thermospheric. The agreement between the results of calculations based on the PDPE method and experimental data is satisfactory. The energy E of the explosion has been estimated using two methods. One of these methods is based on the law of conservation of the acoustic pulse I, which is a product of the wave profile area S/2 of the signal under analysis and the distance to its source E I [kt] = 1.38 × 10–10 (I [kg/s])1.482. The other method is based on the relation between the energy of explosion and the dominant period T of recorded signal E T [kt] = 1.02 × (T [s]2/σ)3/2, where σ is the dimensionless distance determining the degree of nonlinear effects during the propagation of sound along ray trajectories. According to the data, the explosion energy E I,T ranges from 1.87 to 32 kt TNT.  相似文献   
67.
68.
The analysis of spectroscopic data for 30 Algol-type binaries is presented. All these systems are short period Algols having primaries with spectral types B and A. Dominant spectral lines were identified for the spectra collected and their equivalent widths were calculated. All the spectra were examined to understand presence of mass transfer, a disk or circumstellar matter and chromospheric emission. We also present first spectroscopic and period study for few Algols and conclude that high resolution spectra within and outside the primary minimum are needed for better understanding of these Algol type close binaries.  相似文献   
69.
We describe a partial filament eruption on 11 December 2011 that demonstrates that the inclusion of mass is an important next step for understanding solar eruptions. Observations from the Solar Terrestrial Relations Observatory-Behind (STEREO-B) and the Solar Dynamics Observatory (SDO) spacecraft were used to remove line-of-sight projection effects in filament motion and correlate the effect of plasma dynamics with the evolution of the filament height. Flux cancellation and nearby flux emergence are shown to have played a role in increasing the height of the filament prior to eruption. The two viewpoints allow the quantitative estimation of a large mass-unloading, the subsequent radial expansion, and the eruption of the filament to be investigated. A 1.8 to 4.1 lower-limit ratio between gravitational and magnetic-tension forces was found. We therefore conclude that following the loss-of-equilibrium of the flux-rope, the radial expansion of the flux-rope was restrained by the filamentary material until 70% of the mass had evacuated the structure through mass-unloading.  相似文献   
70.
The mineralogy and geochemistry of Ceres, as constrained by Dawn's instruments, are broadly consistent with a carbonaceous chondrite (CM/CI) bulk composition. Differences explainable by Ceres’s more advanced alteration include the formation of Mg‐rich serpentine and ammoniated clay; a greater proportion of carbonate and lesser organic matter; amounts of magnetite, sulfide, and carbon that could act as spectral darkening agents; and partial fractionation of water ice and silicates in the interior and regolith. Ceres is not spectrally unique, but is similar to a few other C‐class asteroids, which may also have suffered extensive alteration. All these bodies are among the largest carbonaceous chondrite asteroids, and they orbit in the same part of the Main Belt. Thus, the degree of alteration is apparently related to the size of the body. Although the ammonia now incorporated into clay likely condensed in the outer nebula, we cannot presently determine whether Ceres itself formed in the outer solar system and migrated inward or was assembled within the Main Belt, along with other carbonaceous chondrite bodies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号